9,10,11Be+64Zn REACTIONS AT THE COULOMB BARRIER

A. Di Pietro^a, L. Acosta^d, F. Amorini^{a,b}, M.J.G. Borge^h, P. Figuera^a, M. Fisichella^{a,b}, L.M. Fraile^e, J. Gòmez-Camacho^f, H. Jeppesen^e, M. Lattuada^{a,b}, I. Martel^d, M.Milin^g, A.Musumarra^{a,c}, M. Papa^a, M.G. Pellegriti^a, R. Raabeⁱ, G. Randisi^{a,b}, F. Rizzo^{a,b}, D. Santonocito^a, G. Scalia^{a,b}, V. Scuderi^{a,b}, E.M.R. Sanchez^h, O. Tengblad^h, D. Torresi^{a,b}, A.M. Vidal^h, M. Zadro^g.

^aINFN- Laboratori Nazionali del Sud and Sezione di Catania, Catania, Italy ^bDipartimento di Fisica ed Astronomia, Università di Catania, Catania, Italy ^cDipartimento di Metodologie Fisiche e Chimiche per l'Ingegneria, Università di Catania, Catania, Italy

^dDepartamento de Física Aplicada, Universidad de Huelva, Huelva, Spain

^e CERN, Geneva, Switzerland

^fDepartamento de Física Atómica, Moleculary Nuclear, Universidad de Sevilla, Spain

^gRuðer Boŝković Institute, Zagreb, Croatia

^hInst. de Estructura de la Materia, CSIC, Madrid, Spain

ⁱInstituut voor Kern-en Stralingsfysica, University of Leuven, Leuven, Belgium

In the last years, a lot of paper have been published concerning reaction studies with halo and weakly bound nuclei, around the Coulomb barrier. In the experiments fusion and reaction cross-sections have been measured in order to understand the effects of coupling to the continuum onto the reaction processes [e.g. 1]. However, the results of the experiments performed and of the theoretical models developed have not lead to an unique conclusion. The experiments involving halo nuclei were performed mainly using ⁶He [e.g. 2-5] beams on different targets. Only the system ¹¹Be+²⁰⁹Bi has been studied with the one neutron halo ¹¹Be [6,7] using a fragmentation ¹¹Be beam, whose energy was degraded down to the Coulomb barrier.

In this contribution, results concerning different reaction channels for the collisions ^{9,10,11}Be+⁶⁴Zn

In this contribution, results concerning different reaction channels for the collisions ^{9,10,11}Be+⁶⁴Zn at energies around the Coulomb barrier will be presented. The experiments with the radioactive beams were performed using for the first time the high quality post-accelerated ^{10,11}Be beams delivered by the REX-Isolde facility (CERN), whereas the experiment with the stable and weakly bound ⁹Be beam was performed at LNS Catania. The analysis of the elastic scattering angular distributions has shown a large difference in the total reaction cross-sections for ^{10,11}Be. Information on the fusion cross sections for the systems ^{9,10}Be+⁶⁴Zn has been extracted by using an activation technique as in [2] and first results will be shown.

- [1] L.F. Canto et al., Phys. Rep. 424, 1, (2006)
- [2] A. Di Pietro at al., Phys. Rev. C69, 044613, (2004)
- [3] R. Raabe at al., Nature 431, 823, (2004)
- [4] J.J. Kolata et al., Phys. Rev. Lett. 81, 4580, (1998)
- [5] Yu E. Penionzhkevich et al., Phys. Rev. Lett. 96, 162701, (2006)
- [6] C. Signorini et al., Nucl. Phys. A735, 329, (2004)
- [7] M.Mazzocco et al., Eur. Phys. J. A 28, 29, (2006)